Search results

1 – 10 of over 47000
Article
Publication date: 15 January 2024

Yongjian Wang, Xigang Yuan and Fei Wang

This paper aims to compare and analyze the effect of the dual-credit policy and product substitution rate on the automakers’ operational strategies under different production…

Abstract

Purpose

This paper aims to compare and analyze the effect of the dual-credit policy and product substitution rate on the automakers’ operational strategies under different production modes (e.g. centralized and independent), and further illustrate which production mode is more conducive to improving new energy vehicle (NEV) development.

Design/methodology/approach

The decision-making models for a centralized production mode where an integrated automaker produces both NEVs and fuel vehicles (FVs) and for independent production mode where an NEV automaker faces competition from a traditional FV automaker were formulated. The equilibrium solutions of each production mode were obtained by extreme value and game theory methods. The conclusions of the theoretical analysis were further verified with numerical analyses using IBM-MATLAB R2019a. Some management insights could be obtained by comparison analysis.

Findings

Under the dual-credit policy, an increase in the NEV credit trading price will always raise production quantity of NEVs, but only in an independent production mode where a higher trading price will also bring higher total profits to NEV automakers. In addition, only when the NEV credit trading price is high enough, a rising product substitution rate will be more favorable to NEV production and restrain FV production. Furthermore, an independent production mode is more favorable for the initial production of NEVs, but as each of the two vehicle types captures a certain amount of market share, a centralized production mode will be more conducive to the full replacement of FVs by NEVs.

Originality/value

The main contributions of this study include the formulation of decision-making models for FVs and NEVs in not only a centralized production mode but also an independent production mode. Moreover, this paper comprehensively analyzes how the dual-credit policy and product substitution relationship affect automakers’ production and pricing decisions. Then, the specific conditions under which each production mode is more conducive to NEV production and sales are summarized. The results proposed in this study provide scientific managerial insights for automakers and policy makers.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 19 September 2016

Ziqiang Cui, Qi Wang, Qian Xue, Wenru Fan, Lingling Zhang, Zhang Cao, Benyuan Sun, Huaxiang Wang and Wuqiang Yang

Electrical capacitance tomography (ECT) and electrical resistance tomography (ERT) are promising techniques for multiphase flow measurement due to their high speed, low cost…

1215

Abstract

Purpose

Electrical capacitance tomography (ECT) and electrical resistance tomography (ERT) are promising techniques for multiphase flow measurement due to their high speed, low cost, non-invasive and visualization features. There are two major difficulties in image reconstruction for ECT and ERT: the “soft-field”effect, and the ill-posedness of the inverse problem, which includes two problems: under-determined problem and the solution is not stable, i.e. is very sensitive to measurement errors and noise. This paper aims to summarize and evaluate various reconstruction algorithms which have been studied and developed in the word for many years and to provide reference for further research and application.

Design/methodology/approach

In the past 10 years, various image reconstruction algorithms have been developed to deal with these problems, including in the field of industrial multi-phase flow measurement and biological medical diagnosis.

Findings

This paper reviews existing image reconstruction algorithms and the new algorithms proposed by the authors for electrical capacitance tomography and electrical resistance tomography in multi-phase flow measurement and biological medical diagnosis.

Originality/value

The authors systematically summarize and evaluate various reconstruction algorithms which have been studied and developed in the word for many years and to provide valuable reference for practical applications.

Article
Publication date: 24 September 2021

Qiang Wang, Chen Meng and Cheng Wang

This study aims to reveal the essential characteristics of nonstationary signals and explore the high-concentration representation in the joint time–frequency (TF) plane.

Abstract

Purpose

This study aims to reveal the essential characteristics of nonstationary signals and explore the high-concentration representation in the joint time–frequency (TF) plane.

Design/methodology/approach

In this paper, the authors consider the effective TF analysis for nonstationary signals consisting of multiple components.

Findings

To make it, the authors propose the combined multi-window Gabor transform (CMGT) under the scheme of multi-window Gabor transform by introducing the combination operator. The authors establish the completeness utilizing the discrete piecewise Zak transform and provide the perfect-reconstruction conditions with respect to combined TF coefficients. The high-concentration is achieved by optimization. The authors establish the optimization function with considerations of TF concentration and computational complexity. Based on Bergman formulation, the iteration process is further analyzed to obtain the optimal solution.

Originality/value

With numerical experiments, it is verified that the proposed CMGT performs better in TF analysis for multi-component nonstationary signals.

Details

Engineering Computations, vol. 39 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 24 April 2023

Yingqian Lin and Yundong Tu

This chapter develops an asymptotic theory for a general transformation model with a time trend, stationary regressors, and unit root nonstationary regressors. This model extends…

Abstract

This chapter develops an asymptotic theory for a general transformation model with a time trend, stationary regressors, and unit root nonstationary regressors. This model extends that of Han (1987) to incorporate time trend and nonstationary regressors. When the transformation is specified as an identity function, the model reduces to the conventional cointegrating regression, possibly with a time trend and other stationary regressors, which has been studied in Phillips and Durlauf (1986) and Park and Phillips (1988, 1989). The limiting distributions of the extremum estimator of the transformation parameter and the plug-in estimators of other model parameters are found to critically depend upon the transformation function and the order of the time trend. Simulations demonstrate that the estimators perform well in finite samples.

Details

Essays in Honor of Joon Y. Park: Econometric Theory
Type: Book
ISBN: 978-1-83753-209-4

Keywords

Article
Publication date: 22 November 2022

Chao Liu, Wei Zhang, Qiwei Xie and Chao Wang

This study aims to systematically reveal the complex interaction between uncertainty and the international commodity market (CRB).

Abstract

Purpose

This study aims to systematically reveal the complex interaction between uncertainty and the international commodity market (CRB).

Design/methodology/approach

A composite uncertainty index and five categorical uncertainty indices, together with wavelet analysis and detrended cross-correlation analysis, were used. First, in the time-frequency domain, the coherency and lead-lag relationship between uncertainty and the commodity markets were investigated. Furthermore, the transmission direction of the cross-correlation over different lag periods and asymmetry in this cross-correlation under different trends were identified.

Findings

First, there is significant coherency between uncertainties and CRB mainly in the short and medium terms, with natural disaster and public health uncertainties tending to lead CRB. Second, uncertainty impacts CRB more markedly over shorter lag periods, whereas the impact of CRB on uncertainty gradually increases with longer lag periods. Third, the cross-correlation is asymmetric and multifractal under different trends. Finally, from the perspective of lag periods and trends, the interaction of uncertainty with the Chinese commodity market is significantly different from its interaction with CRB.

Originality/value

First, this study comprehensively constructs a composite uncertainty index based on five types of uncertainty. Second, this study provides a scientific perspective on examining the core and diverse interactions between uncertainty and CRB, as achieved by investigating the interactions of CRB with five categorical and composite uncertainties. Third, this study provides a new research framework to enable multiscale analysis of the complex interaction between uncertainty and the commodity markets.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 16 December 2022

Arunodaya Raj Mishra, Pratibha Rani, Abhijit Saha, Dragan Pamucar and Ibrahim M. Hezam

Reverse logistics (RL) is a type of supply chain management that moves goods from the end customer to the original manufacturer for reuse, remanufacturing and disposal purposes…

Abstract

Purpose

Reverse logistics (RL) is a type of supply chain management that moves goods from the end customer to the original manufacturer for reuse, remanufacturing and disposal purposes. Owing to growing environmental legislations and the development of new technologies in marketing, RL has attracted more significance among experts and academicians. Outsourcing RL practices to third-party reverse logistics provider (3PRLP) has been identified as one of the most important management strategies due to complexity of RL operations and the lack of available resource. Current sustainability trends have made 3PRLP assessment and selection process more complex. In order to select the 3PRLP, the existence of several aspects of sustainability motivates the experts to establish a new multi-criteria decision analysis (MCDA) approach.

Design/methodology/approach

With the growing complexity and high uncertainty of decision environments, the preference values of 3PRLPs are not always expressed with real numbers. As the generalized version of fuzzy set, intuitionistic fuzzy set and Fermatean fuzzy set, the theory of q-rung orthopair fuzzy set (q-ROFS) is used to permit decision experts (DEs) to their assessments in a larger space and to better cope with uncertain information. Given that the combined compromise solution (CoCoSo) is an innovative MCDA approach with higher degree of stability and reliability than several existing methods.

Findings

To exhibit the potentiality and applicability of the presented framework, a case study of S3PRLPs assessment is taken from q-rung orthopair fuzzy perspective. The assessment process consists of three sustainability aspects namely economic, environment and social dimensions related with a total of 14 criteria. Further, sensitivity and comparative analyses are made to display the solidity and strength of the presented approach. The results of this study approve that the presented methodology is more stable and efficient in comparison with other methods.

Originality/value

Thus, the objective of the study is to develop a hybrid decision-making methodology by combining CoCoSo method and discrimination measure with q-ROFS for selecting an appropriate sustainable 3PRLP (S3PRLP) candidate under uncertain environment. In the proposed method, a novel procedure is proposed to obtain the weights of DEs within q-ROFS context. To calculate the criteria weights, a new formula is presented based on discrimination measure, which provides more realistic weights. In this respect, a new discrimination measure is proposed for q-ROFSs.

Article
Publication date: 15 June 2022

Hua Ke and Xingyue Chen

In this paper, the authors aim to consider the manufacturer's battery research and development (R&D) decision under subsidy. The supply chain includes two manufacturers, which…

Abstract

Purpose

In this paper, the authors aim to consider the manufacturer's battery research and development (R&D) decision under subsidy. The supply chain includes two manufacturers, which produce substitutable electric vehicles, and a battery supplier. One of the manufacturers can choose to develop batteries or buy batteries. The authors assume consumers do not have enough trust in the manufacturer-made battery.

Design/methodology/approach

Stackelberg game is made use of to study the battery R&D strategy of the manufacturer under the incentive of government subsidies. This paper makes a comparative analysis on six situations, then the authors get some conclusions and give some managerial insights.

Findings

The results show that subsidy strategies do not necessarily reduce actual payments when the manufacturer does not research and develop batteries. The retail prices and actual payments are closely related to the substitutability and total cost advantage of product. The authors also find consumer trust positively affects the demand of the electric vehicles using the manufacturer-made batteries and then affects the manufacturer's battery R&D decision. When consumers have low trust in manufacturer-made battery, subsidy can bring greater sales and make R&D more profitable than procurement, so that the manufacturer chooses R&D. This study's findings also suggest consumer subsidy is always better for the government.

Originality/value

Distinguished from previous studies, the authors discuss the decision-making of component research, and introduce various government subsidy strategies and consumer trust to study their roles in the manufacturer's battery R&D choice.

Details

Kybernetes, vol. 52 no. 10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 28 November 2023

Yi-Cheng Chen and Yen-Liang Chen

In this “Info-plosion” era, recommendation systems (or recommenders) play a significant role in finding interesting items in the surge of online digital activity and e-commerce…

Abstract

Purpose

In this “Info-plosion” era, recommendation systems (or recommenders) play a significant role in finding interesting items in the surge of online digital activity and e-commerce. The purpose of this paper is to model users' preference evolution to recommend potential items which users may be interested in.

Design/methodology/approach

A novel recommendation system, namely evolution-learning recommendation (ELR), is developed to precisely predict user interest for making recommendations. Differing from prior related methods, the authors integrate the matrix factorization (MF) and recurrent neural network (RNN) to effectively describe the variation of user preferences over time.

Findings

A novel cumulative factorization technique is proposed to efficiently decompose a rating matrix for discovering latent user preferences. Compared to traditional MF-based methods, the cumulative MF could reduce the utilization of computation resources. Furthermore, the authors depict the significance of long- and short-term effects in the memory cell of RNN for evolution patterns. With the context awareness, a learning model, V-LSTM, is developed to dynamically capture the evolution pattern of user interests. By using a well-trained learning model, the authors predict future user preferences and recommend related items.

Originality/value

Based on the relations among users and items for recommendation, the authors introduce a novel concept, virtual communication, to effectively learn and estimate the correlation among users and items. By incorporating the discovered latent features of users and items in an evolved manner, the proposed ELR model could promote “right” things to “right” users at the “right” time. In addition, several extensive experiments are performed on real datasets and are discussed. Empirical results show that ELR significantly outperforms the prior recommendation models. The proposed ELR exhibits great generalization and robustness in real datasets, including e-commerce, industrial retail and streaming service, with all discussed metrics.

Details

Industrial Management & Data Systems, vol. 124 no. 1
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 22 November 2021

Amin Mihankhah and Ali Doustmohammadi

The purpose of this paper, is to solve the problem of finite-time fault-tolerant attitude synchronization and tracking control of multiple rigid bodies in presence of model…

Abstract

Purpose

The purpose of this paper, is to solve the problem of finite-time fault-tolerant attitude synchronization and tracking control of multiple rigid bodies in presence of model uncertainty, external disturbances, actuator faults and saturation. It is assumed that the rigid bodies in the formation may encounter loss of effectiveness and/or bias actuator faults.

Design/methodology/approach

For the purpose, adaptive terminal sliding mode control and neural network structure are used, and a new sliding surface is proposed to guarantee known finite-time convergence not only at the reaching phase but also on the sliding surface. The sliding surface is then modified using a proposed auxiliary system to maintain stability under actuator saturation.

Findings

Assuming that the communication topology between the rigid bodies is governed by an undirected connected graph and the upper bounds on the actuators’ faults, estimation error of model uncertainty and external disturbance are unknown, not only the attitudes of the rigid bodies in the formation are synchronized but also they track the time-varying attitude of a virtual leader. Using Lyapunov stability approach, finite-time stability of the proposed control algorithms demonstrated on the sliding phase as well as the reaching phase. The effectiveness of the proposed algorithm is also validated by simulation.

Originality/value

The proposed controller has the advantage that the need for any fault detection and diagnosis mechanism and the upper bounds information on estimation error and external disturbance is eliminated.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 28 December 2020

Qinjie Yang, Guozhe Shen, Chao Liu, Zheng Wang, Kai Zheng and Rencheng Zheng

Steer-by-wire (SBW) system mainly relies on sensors, controllers and motors to replace the traditionally mechanical transmission mechanism to realize steering functions. However…

1268

Abstract

Purpose

Steer-by-wire (SBW) system mainly relies on sensors, controllers and motors to replace the traditionally mechanical transmission mechanism to realize steering functions. However, the sensors in the SBW system are particularly vulnerable to external influences, which can cause systemic faults, leading to poor steering performance and even system instability. Therefore, this paper aims to adopt a fault-tolerant control method to solve the safety problem of the SBW system caused by sensors failure.

Design/methodology/approach

This paper proposes an active fault-tolerant control framework to deal with sensors failure in the SBW system by hierarchically introducing fault observer, fault estimator, fault reconstructor. Firstly, the fault observer is used to obtain the observation output of the SBW system and then obtain the residual between the observation output and the SBW system output. And then judge whether the SBW system fails according to the residual. Secondly, dependent on the residual obtained by the fault observer, a fault estimator is designed using bounded real lemma and regional pole configuration to estimate the amplitude and time-varying characteristics of the faulty sensor. Eventually, a fault reconstructor is designed based on the estimation value of sensors fault obtained by the fault estimator and SBW system output to tolerate the faulty sensor.

Findings

The numerical analysis shows that the fault observer can be rapidly activated to detect the fault while the sensors fault occurs. Moreover, the estimation accuracy of the fault estimator can reach to 98%, and the fault reconstructor can make the faulty SBW system to retain the steering characteristics, comparing to those of the fault-free SBW system. In addition, it was verified for the feasibility and effectiveness of the proposed control framework.

Research limitations/implications

As the SBW fault diagnosis and fault-tolerant control in this paper only carry out numerical simulation research on sensors faults in matrix and laboratory/Simulink, the subsequent hardware in the loop test is needed for further verification.

Originality/value

Aiming at the SBW system with parameter perturbation and sensors failure, this paper proposes an active fault-tolerant control framework, which integrates fault observer, fault estimator and fault reconstructor so that the steering performance of SBW system with sensors faults is basically consistent with that of the fault-free SBW system.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 1
Type: Research Article
ISSN: 2399-9802

Keywords

1 – 10 of over 47000